

Combined half- and full skip inspection of 200 mm thick calibration block: focal point migrates along the vertical line connecting the centers of the reflectors

Inspection SW Application for ISONIC 3510 - Pha Vertical Line Focusing Scanning and Imaging inspection of planar and circumferential narro ER welds, welded rails, etc)

- ⇒ True-To-Geometry Volume Corrected Imaging Cross End- View and 3D
- ⇒ Sector-Scan and B-Scan (Linear Scan) Cross Sectiona ⇒ Intuitive Image Guided PA Pulser Receiver with Beam
 - ⇒ DAC / TCG Normalization
 - ⇒ Built-In Ray Tracer Scanning Pattern Design
 - ⇒ Independent on TCG Angle Gain Compensation / Gain
 - ➡ Automatic Coupling Monitor
 - ⇒ Encoded and Time based C-Scan
 - ➡ 100% Raw Data Capturing
 - ⇒ FMC/TFM Protocol for the data acquisition and imaging
 - ⇒ Automatic Defects Alarming Upon C-Scan Acquisition
 - Automatic Creation of Editable Defects List

⇒ Puzzling Suitable C-Scan Inspection Record - Ability of Both Side with Storing a Number of Files Mergeable Into a Si ⇒ Comprehensive Postrpocessing Including:

→ Recovery and Evaluation of Captured A-Scans from (Sector Scan / B-Scan) and C-Scans

- → Recovery of Cross Sectional Views from the Record
- \rightarrow Converting Recorded C-Scans or their Segments into
- \rightarrow Off-Line Gain Manipulation \rightarrow
- Off-Line DAC Normalization of the Recorded Images \rightarrow Numerous Filtering / Reject Options (by Geometry /
- etc) \rightarrow Defects Sizing
 - Creation of Defect List and Storing it Into a Separate \rightarrow
- Automatic creating of inspection reports hard copy / PDF File \rightarrow

	Order Code (Part ##)
ased Array Modality: VLFS – ((typical application: ow gap heavy thickness welds,	SWA 3510006
Sectional and Top (C-Scan)- / Side- /	
al Coverage Forming View	
n Per Focal Law Correction	
g Completed	
of Scanning Weld In Several Shots from ingle File Inspection Report	
the Recorded Cross Sectional Views	
led C-Scans to 3D Images	
s / DAC Evaluation / Position / By Amplitude / dB-to-DAC /	
e File / PDF File	

4		Coloring		Thickness Measurements
1	-	Pseudo2	•	
2	$\lfloor /$	E Flank		
1		V Normaliz	e To DAC	Width Measurements
-		V Paint		
4	-/	Max Ech	0	Filtering
5		Show All S	ikips 👻	OFF
			Anole	Zoom
	4		24.5%	X1.0 X1 X2 X3
		0.6 dB	34.3*	Coupling
		300	350 400	450 500 550 E
		210	280	350 420
/	and the second s	XX		
	1	V		

Combined half- and full skip inspection of 200 mm thick calibration block: focal point migrates along the vertical line connecting the centers of the reflectors

Inspection SW Application for ISONIC 2009 UPA VLFS – Vertical Line Focusing Scanning and inspection of planar and circumferential narro ER welds, welded rails, etc)

- ⇒ True-To-Geometry Volume Corrected Imaging Cross End- View and 3D
- ⇒ Sector-Scan and B-Scan (Linear Scan) Cross Sectiona
- ⇒ Intuitive Image Guided PA Pulser Receiver with Beam ⇒ DAC / TCG Normalization
- ⇒ Built-In Ray Tracer Scanning Pattern Design ⇒ Independent on TCG Angle Gain Compensation / Gain
- ➡ Automatic Coupling Monitor ⇒ Encoded and Time based C-Scan
- ➡ 100% Raw Data Capturing
- ⇒ FMC/TFM Protocol for the data acquisition and imaging ⇒ Automatic Defects Alarming Upon C-Scan Acquisition
- Automatic Creation of Editable Defects List
- ➡ Puzzling Suitable C-Scan Inspection Record Ability of
- Both Side with Storing a Number of Files Mergeable Into a Sir ⇒ Comprehensive Postrpocessing Including:
- → Recovery and Evaluation of Captured A-Scans from (Sector Scan / B-Scan) and C-Scans
- → Recovery of Cross Sectional Views from the Record
- Converting Recorded C-Scans or their Segments inter \rightarrow \rightarrow Off-Line Gain Manipulation
- Off-Line DAC Normalization of the Recorded Images \rightarrow
- \rightarrow
- Numerous Filtering / Reject Options (by Geometry / etc)
 - Defects Sizing \rightarrow
 - Creation of Defect List and Storing it Into a Separate \rightarrow
- Automatic creating of inspection reports hard copy **→**

	Sector Scan - VLFS.vsb			
Fi	le View Ed	it Measuremen	ts	
	* + + +		1 Gair 47 dE	-
	$\overline{\mathbf{X}}$		aSwitch ON	' (
	+ + + +		2 a Star 412.2 m	t 📢
	+ + + +		2 aWidt	h 🚺
			10 aThres 10%	hold
F	Sound Path	RSD	Depth	Amplitude
	425.0 mm	187.2 mm	49.8 mm	18.0%
-	0 5	0 100 420 3	150 2 350 2	00 250 80
ш.				
20				
20	- - - -			
100 50				
145.3 100 50				
200 145.3 100 50				

	Order Code (Part ##)
A-Scope - Phased Array Modality: Imaging (typical application: ow gap heavy thickness welds,	SWA 909806
Sectional and Top (C-Scan)- / Side- /	
al Coverage Forming View	
n Per Focal Law Correction	
g Completed	
of Scanning Weld In Several Shots from ingle File Inspection Report	
the Recorded Cross Sectional Views	
led C-Scans to 3D Images	
s / DAC Evaluation / Position / By Amplitude / dB-to-DAC /	
e File / PDF File	

á 膨	Coloring		Thickness Measurements
	Pseudo2	-	
ē _/	Flank		
é 🗆	V Normaliz	e To DAC	Width Measurements
/ _	Paint		
≝ _/	Max Ech	10	Filtering
ś 🗭	Show All S	ikips 👻	OFF
	VC(A)	Angle	Zoom
1	0.6.dB	34.5°	X1.0 X1 X2 X3
	0.0 UD	34.3	Coupling
	300	350 400	450 500 550 601.9 E
210	14	10 70	0 0mm70
210	14	10 70	0 0mm -70
210	14	10 70	0 0mm -70
210	14	10 70	0 0mm -70
210	14	10 70	0 0mm -70
210	12	10 70	0
210	12	10 70	0
210	12	10 70	<u>0</u> mm -70
210	12	10 70	<u>0</u> mm -70
210	12	10 70	0 0mm -70
210	12	10 70	0 0mm -70
210	12	10 70	<u>0</u> mm -70

	Order Code (Part ##)
ased Array Modality: VLFS – (typical application: ow gap heavy thickness welds,	SWA 910806
Sectional and Top (C-Scan)- / Side- /	
al Coverage Forming View	
n Per Focal Law Correction	
g Completed	
of Scanning Weld In Several Shots from ingle File Inspection Report	
the Recorded Cross Sectional Views	
led C-Scans to 3D Images	
s / DAC Evaluation / Position / By Amplitude / dB-to-DAC /	
e File ∕ PDF File	

Item

Gai 47 dE

ON aS 412.2

> 35.3 n aThr

> > 26

X1.0

Thickness Measurements
t Width Measurements
hold OFF
K1 X2 X3 Max Echo AScan BScan
400 500 600 700 800 880) 130 0mm -130
400 500 600 700 800 830 0 130 0mm -130

Reverse TOFD: compression wave PE detection of the cracks and lack of side wall fusion defects in narrow gap heavy thickness welds based on the receiving and waveform analysis of the upper and lower tip-diffraction echoes

Reverse TOFD: compression wave PE detection of the cracks and lack of side wall fusion defects in narrow gap heavy thickness welds based on the receiving and waveform analysis of the upper and lower tip-diffraction echoes

Reverse TOFD: Every planar vertical defect with sharp edges returns the diffracted signals from the upper and lower tip

Coloring Pseudo2 Flank Normalize To DAC Paint Max Echo C(A) Angle 130% 23.0° State of the second se		
Coloring Thickness Measurements Pseudo2 Image: Second Seco		
Pseudo2 Flank Normalize To DAC Paint Max Echo Filtering C(A) Angle X3.0 X1 X2 X3 80 300 320 440 560 560 560 560 560 560 560 560 560 56	Coloring	Thickness Measurements
Flank Normalize To DAC Paint Max Echo Filtering OFF Zoom X3.0 X1 X2 30 300 320 340 360	Pseudo2 👻	
Normalize To DAC Paint Max Echo Filtering C(A) Angle I30% 23.0° 80 300 320 340 360 E E E Image: Comparison of the system of the syst	Flank	
Paint Max Echo Filtering C(A) Angle Zoom X3.0 X1 X2 X3 80 300 320 340 360 80 300 320 40 40 40 80 300 320 100 100 100 80 300 320 100 100 100 80 300 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Normalize To DAC	Width Measurements
Max Echo Filtering C(A) Angle I30% 23.0° 80 300 320 340 360 60 60 60 60 60 7 80 300 320 340 360 60	7 Paint	
C(A) Angle Zoom 130% 23.0° X1 X2 X3 80 300 320 340 360 9 300 320 40 40 40 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 </td <td>Max Echo</td> <td>Filtering</td>	Max Echo	Filtering
C(A) Angle Zoom 130% 23.0° X1 X2 X3 180 300 320 340 360 180 300 320 - - 180 300 - - - 180 300 - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180 - - - - 180		OFF
30% 23.0° X3.0 X1 X2 X3 80 300 320 340 360	C(A) Angle	Zoom
	130% 23.0°	X3.0 X1 X2 X3
	80 300	320 340 360
		E
		÷ ۳

Reverse TOFD: It is possible to provide the sectorial scan coverage of the region of interest combining focusing along the vertical line and gating the A-Scans in a manner providing the cross-sectional gated imaging. This allows the phase analyzing for the signals received: as for the traditional TOFD technology the phase shift is 180 deg for the upper / lower tip diffraction echoes

Reverse TOFD: It is possible to provide the sectorial scan coverage of the region of interest combining focusing along the vertical line and gating the A-Scans in a manner providing the cross-sectional gated imaging. This allows the phase analyzing for the signals received: as for the traditional TOFD technology the phase shift is 180 deg for the upper / lower tip diffraction echoes

8

99

20

8

Coloring		Thickness Measurements
Pseudo2	•	
Flank		
V Normalize To DAC		Width Measurements
✓ Paint		
Max Ech	0	Filtering
		OFF
C(A)	Angle	Zoom
0 dB	44.0°	X1 X2 X3
° uD	1.1.0	
170	180	190 199.7 210 2:
		^
4		E
<u>}</u>		

Reverse TOFD: It is possible to provide the sectorial scan coverage of the region of interest combining focusing along the vertical line and gating the A-Scans in a manner providing the cross-sectional gated imaging. This allows the phase analyzing for the signals received: as for the traditional TOFD technology the phase shift is 180 deg for the upper / lower tip diffraction echoes

Gain

69 dB

ON

112.4 mm

aThre

Depth

106.0 mm

140

20%

10

aStart

aWidth 29.1 mm

5

160

Amplitude

44.9%

150

80

8

102.000

110

<u>Shear wave</u>

Inspection of ERW / thermite joints in the rails – detection and sizing of planar vertical and other defects

Secondary inspection of rails for confirming/rejecting AUT findings and precise sizing of confirmed indications

4, Pekeris st., Rabin Science Park, Rehovot, 7670204, Israel Phone: +972-(0)8-9311000, Fax: +972-(0)8-9477712 www.sonotronndt.com **ROI S-Scan**

FMC/TFM

Compression wave

Inspection of ERW / thermite joints in the rails – detection and sizing of planar vertical and other defects

Secondary inspection of rails for confirming/rejecting AUT findings and precise sizing of confirmed indications

4, Pekeris st., Rabin Science Park, Rehovot, 7670204, Israel Phone: +972-(0)8-9311000, Fax: +972-(0)8-9477712 www.sonotronndt.com

Sonotron NDT

1 x x x

ROI S-Scan

FMC/TFM